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Finite-temperature quantum turbulence is often described in terms of two immiscible fluids that can flow
with a nonzero-mean relative velocity. Such out-of-equilibrium state is known as counterflow superfluid
turbulence. We report here the emergence of a counterflow-induced inverse energy cascade in three-
dimensional superfluid flows by performing extensive numerical simulations of the Hall-Vinen-Bekar-
evich-Khalatnikov model. As the intensity of the mean counterflow is increased, an abrupt transition, from
a fully three-dimensional turbulent flow to a quasi-two-dimensional system exhibiting a split cascade, is
observed. The findings of this work could motivate new experimental settings to study quasi-two-
dimensional superfluid turbulence in the bulk of three-dimensional experiments. They might also find
applications beyond superfluids in systems described by more than one fluid component.
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Turbulence is an out-of-equilibrium state observed in
fluids when a large-scale separation exists between the
forcing scale, at which the fluid is stirred, and the
dissipation scales where energy is efficiently purged out
from the system. As a result of the inherently nonlinear
dynamics of fluids, energy is transferred along scales. Such
idea led Richardson to propose his cascade scenario, where
in three-dimensional classical turbulence, energy is trans-
ferred toward small scales in a cascade process [1]. Such a
direct cascade, i.e., with energy flowing from large to small
scales, is ubiquitous in nature. It also takes place, for
instance, in magnetohydrodynamic turbulence (e.g., in the
solar wind [2]) and in quantum turbulence [3]. It was later
realized by Kraichnan that, in two dimensions, due to the
conservation of enstrophy (mean vorticity square), a differ-
ent scenario takes place [4]. Energy flows toward large
scales through an inverse cascade, whereas enstrophy flows
toward small scales by a direct cascade. Such scenario
has been confirmed experimentally and numerically (see
Ref. [5] and references therein).
More complex systems, such as stratified rotating

turbulence, magnetohydrodynamics with a strong back-
ground field, and some decimated models of turbulence,
might even present split cascades and transitions, where
fluxes can change direction depending on some external
parameters [6–9]. Similarly, thin layer flows, where one
dimension is progressively squeezed, exhibit an abrupt
transition from three- to two-dimensional phenomenology
[10,11]. More recently, such kind of abrupt transition
has also been reported in numerical simulations of low-
temperature superfluid turbulent flows [12].
Superfluids are peculiar types of fluids characterized by

the complete absence of viscosity at low temperature and

the presence of quantized vortices (filaments with a
quantized circulation). At finite temperatures, such fluids
are composed of two immiscible components: a superfluid
with no viscosity, and a viscous normal fluid [13]. The latter
is described by the Navier-Stokes equations. Theses two
fluids are coupled through a mutual friction force which
arises from the scattering of thermal excitations on quan-
tized vortices [13,14]. The two-fluid description originally
proposed by Landau enables the possibility of a turbulent
state with no classical analogs, in which the mean relative
velocity between these two components is nonzero. Such
out-of-equilibrium state is known as counterflow turbu-
lence and is typically produced by imposing a tempera-
ture gradient in a channel [3,14]. Recent numerical studies
of counterflow turbulence have shown a tendency of the
system to develop large-scale quasi-two-dimensional struc-
tures [15,16]. This observation suggests the possibility of a
counterflow-induced inverse energy cascade in quantum
turbulent flows.
In this Letter, we investigate the emergence of a split

energy cascade in counterflow superfluid turbulence using
direct numerical simulations of the coarse-grained Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) model. We show
an abrupt transition from an isotropic 3D flow (in the absence
of a mean counterflow) to a quasi-2D flow as the mean
counterflow velocity is increased. In particular, for strong
counterflow, we observe at large scales the Kolmogorov-
Kraichnan phenomenology of two-dimensional turbulence.
Such a large-scale manifestation is a pure consequence of
counterflow turbulence and can thus be seen as a macro-
scopic manifestation of quantum mechanics.
At scales larger than the mean intervortex distance,

finite-temperature superfluid helium can be described by
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the HVBK equations. In this framework, the motion of
discrete quantum vortices is replaced by their effective
coarse-grained dynamics represented by a continuous
superfluid velocity field. The turbulent velocity fluctuations
vn and vs of the normal and superfluid components then
follow two coupled Navier-Stokes equations [13,15,17,18],

∂vc
∂t þ ðUc þ vcÞ · ∇vc ¼ −

∇pc

ρc
þ νc∇2vc þ f c þ φc; ð1Þ

∇ · vc ¼ 0; c ∈ fn; sg; ð2Þ

where the subscript c identifies each component. The
normal fluid viscosity is denoted by νn. The effective
superfluid viscosity νs accounts for energy dissipation due
to physics not resolved by the HVBK equations, including
small-scale mutual friction, quantum vortex reconnections,
and Kelvin wave excitation [18,19]. The respective den-
sities of the normal and superfluid are ρn and ρs, and the
total density of the fluid is ρ ¼ ρn þ ρs. The two fluids are
stirred by independent zero-mean 3D Gaussian random
forces φn and φs of equal variance σ2f. In this model, a
mean counterflow velocity Uns ¼ Un − Us is imposed by
setting the respective mean velocities of each component,
Un and Us. Despite Uns being a mean quantity, it cannot be
removed with a Galilean transformation, unlike a constant
mean flow in classical turbulence. The case of zero-mean
counterflow is known as coflow quantum turbulence.
The mutual friction forces are f s ¼ −ðρn=ρsÞf n ¼ f ns,

where f ns depends on vns ¼ vn − vs. In the simplest HVBK
description, this coarse-grained mutual friction force reads
f ns ¼ αΩ0vns, where α is a temperature-dependent non-
dimensional coefficient [19], and the mutual friction
frequency Ω0 is related to the density and polarization
of quantum vortices. When vortex lines are randomly
oriented, as is the case in coflowing quantum turbulence,
this frequency may be estimated as Ω0 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjωsj2i

p
=2

[20,21], whereωs is the coarse-grained superfluid vorticity,
and h·i is an average over space. Under strong counterflow,
the vortex orientation is anisotropic, and this expression
may underestimate the actual friction. In this case, a
common approach is to take Ω0 as an external control
parameter [15,22]. Unless stated otherwise, the first esti-
mation is used throughout this work.
We numerically solve Eqs. (1) and (2) using a standard

fully parallelized pseudospectral solver in a cubic periodic
box of size L ¼ 2π [23]. For the sake of simplicity, we only
consider here the case of superfluid helium at T ¼ 1.9 K,
where the two fluid components have similar densities
(ρs=ρn ¼ 1.35) and viscosities (νs=νn ¼ 1.25) [19,24].
The total energy per unit volume of the system is

ρE ¼ ρnEn þ ρsEs, where Ec ¼ hjvcj2i=2 is the turbulent
kinetic energy associated with each component. We con-
sider the energy spectra

EcðkÞ ¼
1

2

X

k≤jkj<kþ1

jv̂cðkÞj2 for k ∈ Z; c ∈ fn; sg; ð3Þ

where v̂cðkÞ is the Fourier transform of vc, and k its wave
vector. The total energy spectrum is the weighted average
EðkÞ ¼ ½ρnEnðkÞ þ ρsEsðkÞ�=ρ. It quantifies the scale-by-
scale repartition of turbulent kinetic energy of the fluid as a
whole. The relative velocity spectrum EnsðkÞ is defined by
replacing v̂c with v̂ns.
A first simulation is performed using N3 ¼ 10243

collocation points, with independent steady 3D forcings
φn and φs localized at the wave number kf ¼ 15. Initially,
the two components have no velocity fluctuations
(vn ¼ vs ¼ 0). The imposed counterflow velocity normal-
ized by the forcing velocity vf ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

σf=kf
p

is Ũns≡
Uns=vf ¼ 40. In Fig. 1, the time evolution of the total
energy spectrum is shown. Over time, energy flows from kf
toward both the smallest and the largest scales of the
system, suggesting the formation of a split cascade. Note
that this behavior does not occur in classical three-
dimensional turbulence, where a power-law spectrum kn

with n ≥ 1, usually associated with thermalized modes, is
observed at scales larger than the forcing one [25]. We have
observed that both the normal and superfluid energy spectra
follow the same trend as EðkÞ. In particular, since the two
components are locked at large scales, the three spectra are
almost identical for k < kf. We have also verified that this
phenomenon is robust if we turn off the forcing on the
superfluid component, or if both forcings are applied at
different scales.
In the HVBK system, energy is dissipated by the coarse-

grained mutual friction force, by the kinematic viscosity νn
of the normal fluid and by the effective viscosity νs of the
superfluid. It follows from Eq. (1) that

FIG. 1. Temporal evolution of the total energy spectrum under
strong counterflow at T ¼ 1.9 K. Dotted line: relative velocity
spectrum EnsðkÞ at the final time. In the legend, times are scaled
by the forcing timescale tf ¼ ðkfσfÞ−1=2. Inset: normalized total
energy flux. At the final time, the normal fluid Reynolds number
is Ren ¼ 159.
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dE
dt

¼ −ðεν þ εMFÞ þ I ; ð4Þ

where ρεν ¼ ρnνnhjωnj2i þ ρsνshjωsj2i is the small-scale
viscous dissipation, ρI ¼ ρnhvn · φni þ ρshvs · φsi is the
power injected by the forcing, and εMF ¼ Ωnshjvnsj2i is the
dissipation by mutual friction, with Ωns ¼ αρsΩ0=ρ. Note
that EnsðkÞ is directly related to the mutual friction
dissipation as εMF ¼ 2Ωns

P
k EnsðkÞ, and thus character-

izes the scale-by-scale contributions to εMF. Additionally,
as customary in turbulence [1], one can define the energy
flux across wave number k as ΠcðkÞ ¼ hv<kc · ½vc · ∇vc�i,
where v<kc is the low-pass filtered velocity field vc such that
v̂cðkÞ ¼ 0 for jkj > k. The energy flux ΠcðkÞ quantifies the
nonlinear transfer of energy from large scales (such that
jkj ≤ k) to small scales (jkj > k). The total energy flux
ΠðkÞ is defined as the weighted average of the normal and
superfluid contributions.
The inset of Fig. 1 shows the energy flux at different

times. Notably, it is negative and relatively flat for k < kf,
indicating the presence of a inverse energy cascade.
Conversely, it is positive for k > kf indicating also a
transfer toward small scales. The direct cascade builds
up rapidly and has a scaling compatible with k−3. In
classical 2D turbulence, this scaling is associated with a
constant enstrophy flux at small scales [4,5,26]. It has also
been predicted theoretically in 2D flows with small-scale
3D perturbations [27]. Elucidating the origin of such
scaling is out of the scope of this Letter, as we focus on
the inverse energy cascade.
The buildup of the inverse cascade (k < kf) is slower. As

in 2D turbulence, a Kolmogorov k−5=3 spectrum starts to
develop at large scales. Because of the lack of a large-scale
dissipation, energy accumulates at the largest scales,
eventually leading to the formation of a condensate.
As suggested by the EnsðkÞ spectrum in Fig. 1 (dotted

magenta line), the mutual friction dissipation is negligible
at scales larger than the forcing, and thus, the inverse
cascade dynamics is expected to be similar to that of 2D
turbulence. Namely, energy flows toward the largest scales
with negligible loss due to mutual friction. This is not the
case for the direct cascade, which coexists with a strong
mutual friction dissipation. Hence, for any given k > kf, a
fraction of the energy flows toward smaller scales, while
another part is locally dissipated by mutual friction. As a
result, ΠðkÞ monotonically decreases for k > kf, and an
inertial range with a constant energy flux is never observed.
To characterize the effect of the Reynolds number and of

the mutual friction coupling on the split cascade, we
perform simulations at resolutions N3 ¼ 5123 and 10243

with different viscosities νs and νn, while keeping their
ratio νs=νn ¼ 1.25 constant. The normal component

Reynolds number is Ren ¼ vðnÞrms=ðνnkfÞ, with vðnÞrms the
standard deviation of vn. The counterflow velocity is fixed

at Ũns ¼ 40. As shown in Fig. 2, the k−5=3 scaling of the
inverse cascade is already robust for moderately large
Reynolds numbers, while the direct cascade tends to the
k−3 scaling at increasing Ren. Also included is a simulation
(dotted lines) with a viscosity ratio νs=νn ¼ 0.25 which
also displays an inverse energy cascade. This suggests that
the choice of effective superfluid viscosity has no influence
on the large-scale dynamics. Finally, we include a simu-
lation (dashed lines) with an imposed mutual friction
frequency Ω0 that is 4 times larger than the one resulting
from the ωs-based estimate. The higher coupling between
the two components has no apparent influence on the
inverse cascade, while at the small scales, it further
suppresses the velocity fluctuations. Nevertheless, as con-
firmed by the energy fluxes (inset of Fig. 2), the double
cascade scenario remains mostly unchanged when the
coupling is stronger.
We now proceed to study the transition from the

coflowing turbulence with no inverse cascade to the
counterflow-induced double cascade scenario. For this,
we perform a parametric analysis by varying the counter-
flow velocity (Uns) while setting constant forcing and
mutual friction parameters. The simulations are performed
at resolutions N3 ¼ 1283 and 2563. We now include in
Eq. (1) a large-scale dissipation term to obtain a statistically
steady state. Moreover, to increase the span of the direct
and inverse inertial ranges, the dissipations are strongly
localized in wave number space by imposing hypofriction
and hyperviscosity mechanisms [5]. These modifications
are obtained by replacing the viscous dissipative terms in
Eq. (1) with −½ν0ð−∇2Þ4 þ μ0ð−∇2Þ−4�vc. For simplicity,
the two fluid components are given the same values of ν0
and μ0. Finally, similar to other studies of transition to 2D

FIG. 2. Compensated total energy spectrum under strong
counterflow at T ¼ 1.9 K for different Reynolds numbers.
Counterflow values are kept the same, Ũns ¼ 40, across all
simulations. Solid lines, νs=νn ¼ 1.25 and Ω2

0 ¼ hjωsj2i=2;
dotted line, viscosity ratio νs=νn ¼ 0.25 (low νs case); dashed
line, externally imposed Ω0 (high mutual friction case). Inset:
total energy flux ΠðkÞ=εν. Spectra and fluxes are averaged over
Δt ¼ 30tf .
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turbulence [10,28], a 2D forcing scheme is introduced in
which the external forces φc are orthogonal to the mean
counterflow and do not vary in that direction (i.e.,Uns · φc ¼
Uns · ∇φc ¼ 0).
The energy balance (4) now writes dE=dt ¼

−ðεμ þ εν þ εMFÞ þ I , with εμ and εν the large- and
small-scale dissipations, respectively, associated with the
hypofriction and hyperviscous terms. We quantify the
strength of the inverse energy cascade by the relative
large-scale dissipation

Qμ ¼
εμ

εν þ εμ
: ð5Þ

Note that, in contrast to previous studies [28], here the
denominator is not the injected power I. This choice is
made because the injected energy is mostly dissipated
locally (in Fourier space) at the forcing scale by mutual
friction (as suggested by the Ens spectrum in Fig. 1, peaked
at k ¼ kf).
The variation of the steady-state energy spectrum EðkÞ

with the imposed counterflow velocityUns is shown in Fig. 3
for a set of simulations withN3 ¼ 2563. An abrupt transition
is observed, from the absence of an inverse cascade at low
Uns to a double cascade scenario with power laws character-
istic of 2D turbulence at large Uns. In the latter case, the
inertial ranges are equivalent to those observed in higher-
resolution simulations (Figs. 1 and 2), suggesting that the
double cascade is not affected by the dissipationmechanisms
at large and small scales. The dependence of Qμ with Ũns

(inset of Fig. 3), including for the sake of completeness the
case of a 3D forcing, confirms the appearance of an inverse
energy cascade at a critical value of the counterflow velocity
Ũ�

ns. Remarkably, the transition is much more abrupt when

the forcing is two dimensional than with the original three-
dimensional scheme, even though the value of Ũ�

ns remains
almost unchanged.
From dimensional analysis, the critical counterflow

velocity U�
ns can be expected to depend on the normalized

forcing wave number kf=kL (where kL ¼ 2π=L),
and on the nondimensional mutual friction intensity
Ω̃ns ¼ Ωns=ðkfσfÞ1=2. Empirically, from multiple sets of
simulations using different forcing and mutual friction
parameters, we find the relation Ũ�

ns ¼ CΩ̃1=2
ns kf=kL,

where C is a nondimensional constant. In terms of
dimensional variables, this scaling becomes U�

ns ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vfΩns=kf

p ðkf=kLÞ. Note however, that this is an asymp-
totic formula which assumes that Ωns is sufficiently large,
as for Ωns ¼ 0 the two fluids are uncoupled and no
transition can be observed. Figure 4 displays the dissipation
ratio Qμ as a function of the counterflow velocity scaled
according to the above empirical relation, for different
values of the parameters. All simulations invariably display
an abrupt transition toward a double cascade scenario at
nearly the same scaled counterflow velocity, which corre-
sponds to a nondimensional constant C ≈ 1.5. Note that we
also present simulations with different values of the small-
scale dissipative wave number kη, validating the previous
scaling. A theoretical explanation, and further verification
of this empirical law, are out of the scope of this Letter.
We have shown clear evidence of an inverse energy

cascade emerging in finite-temperature quantum turbulence
under strong counterflow. Although described by coarse-
grained fluid-type equations, this phenomenon can be seen

FIG. 3. Total energy spectrum for different counterflow veloc-
ities Ũns. Simulations are performed with a 2D forcing scheme
and include hypofriction and hyperviscosity terms (see text for
details). Inset: relative large-scale dissipation Qμ as a function of
the counterflow velocity, for 2D (squares) and 3D (triangles)
forcing schemes. The forcing parameters ðkf; σfÞ are the same
across all simulations.

FIG. 4. Dissipation ratio as a function of the normalized
counterflow velocity, for different forcing and mutual friction
parameters. In all cases a 2D forcing scheme is used. Each marker
corresponds to a single simulation. Resolutions are N3 ¼ 1283

(solid lines) and 2563 (dashed lines), with dissipative wave
numbers of kη ≈ 100 and kη ≈ 200, respectively. Unless stated

otherwise in the legend, the mutual friction frequency is Ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjωsj2i

p
=2 and the numerical value of the forcing intensity is

σf ¼ 1.
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as a large-scale manifestation of quantum mechanics.
Indeed, it originates from the presence of a counterflow
and the coupling between the two fluid components due to
mutual friction, two physical phenomena that arise from
quantum mechanical effects.
The appearance of an inverse cascade and the strong

bidimensionalization suggest the possibility of using strong
counterflow to produce (quasi-) two-dimensional turbulent
flows in the bulk of three-dimensional experiments. Such
experiments may be easier to realize than those performed
in thin superfluid helium films [13,29,30]. From Fig. 2, we
note that the Reynolds numbers needed to trigger the
inverse cascade are relatively low. Therefore, an inverse
energy cascade should be realizable for instance in super-
fluid experiments with moving or oscillating objects
[31,32], provided the experiments are performed over
sufficiently long times, and that some scale separation
exists between the object size and the container. Such an
object should move fast enough to ensure a Reynolds
number of order Re ∼100 (see Fig. 2). This is not very
challenging for current experiments and is low enough for
the critical counterflow velocity to remain achievable
(about 10–15 times the velocity of the object; see inset
of Fig. 3).
In this Letter, we have only reported the case of super-

fluid helium at T ¼ 1.9 K, where the normal and superfluid
densities are similar. At different temperatures, but still
within the range of applicability of the HVBK model, the
situation might be slightly more complex but the abrupt
appearance of an inverse cascade remains unchanged (data
not shown). This will be reported in a future work.
Moreover, note that the large- and small-scale dissipation
mechanisms have no influence on the emergence of the
inverse cascade, making this finding universal.
Finally, we would like to remark that the results of this

Letter might find applications in systems which are not
related to superfluid helium, but whose physics is described
by the presence of two or more fluid components. This is
the case, for instance, of partially ionized magnetohydro-
dynamics occurring in the upper atmospheres of hot
Jupiters and in the interior of gas giant planets [33,34].
In such systems, in addition to the induction equation for
the magnetic field, the fluid components are described by
equations strongly resembling the HVBK model. However,
since some components are charged, the components are
also coupled to the magnetic field through the Lorenz force.
It will be then of natural interest to investigate the
consequences of strong counterflow in the physics of
planetary science and other multicomponent fluid systems.
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